polarcbo.dynamic.PolarCBS
- class polarcbo.dynamic.PolarCBS(x, V, beta=1.0, tau=0.1, mode='sampling', kernel=<polarcbo.functional.Gaussian_kernel object>)[source]
Bases:
ParticleDynamic
Polarized CBS class
This class implements the polarized CBS algorithm as described in [1].
- Parameters:
x (array_like) – The initial positions of the particles. The shape of the array should be (num_particles, num_dimensions).
V (obejective) – The objective function \(V(x)\) of the system.
beta (float, optional) – The heat parameter \(\beta\) of the system. The default is 1.0.
tau (float, optional) – The time constant \(\tau\) of the noise model. The default is 0.1.
mode (str, optional) – The mode of the algorithm. The default is
sampling
.kernel (object, optional) – The kernel function \(K(x_i, x_j)\) that is used to compute the mean \(\mathsf{m}(x_i)\). The default is
Gaussian_kernel()
.
References
- step(time=0.0)[source]
Perform one step of the algorithm
- Parameters:
time (float, optional) – The current time of the algorithm. The default is 0.0.
- Return type:
None.
- covariance_noise()[source]
Compute the covariance noise
- Returns:
noise – The covariance noise.
- Return type:
array_like